Computational snow avalanche simulation in forested terrain

نویسندگان

  • M. Teich
  • J.-T. Fischer
  • A. Grêt-Regamey
چکیده

Two-dimensional avalanche simulation software operating in three-dimensional terrain is widely used for hazard zoning and engineering to predict runout distances and impact pressures of snow avalanche events. Mountain forests are an effective biological protection measure against avalanches; however, the protective capacity of forests to decelerate or even to stop avalanches that start within forested areas or directly above the treeline is seldom considered in this context. In particular, runout distances of smallto medium-scale avalanches are strongly influenced by the structural conditions of forests in the avalanche path. We present an evaluation and operationalization of a novel detrainment function implemented in the avalanche simulation software RAMMS for avalanche simulation in forested terrain. The new approach accounts for the effect of forests in the avalanche path by detraining mass, which leads to a deceleration and runout shortening of avalanches. The relationship is parameterized by the detrainment coefficient K [kg m−1 s−2] accounting for differing forest characteristics. We varied K when simulating 40 well-documented smallto medium-scale avalanches, which were released in and ran through forests of the Swiss Alps. Analyzing and comparing observed and simulated runout distances statistically revealed values for K suitable to simulate the combined influence of four forest characteristics on avalanche runout: forest type, crown closure, vertical structure and surface cover, for example, values for K were higher for dense spruce and mixed spruce-beech forests compared to open larch forests at the upper treeline. Considering forest structural conditions within avalanche simulations will improve current applications for avalanche simulation tools in mountain forest and natural hazard management.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Lidar measurement of snow depth: a review

Laser altimetry (lidar) is a remote-sensing technology that holds tremendous promise for mapping snow depth in snow hydrology and avalanche applications. Recently lidar has seen a dramatic widening of applications in the natural sciences, resulting in technological improvements and an increase in the availability of both airborne and ground-based sensors. Modern sensors allow mapping of vegetat...

متن کامل

Positioning of Avalanche Protection Measures Using Snow Depth Mapping via Terrestrial Laser Scanning

In recent years snow depth mapping via terrestrial laser scanning has become increasingly popular as a measurement method used for snow and avalanche research. Due to technological advancements, it is now possible to measure the spatial snow depth distribution on slopes over an area of 4 km2 in a horizontal resolution of 3 cm (at a distance of 100 m), with an accuracy of 5 cm. In this presentat...

متن کامل

Insights into the physical processes controlling correlations between snow distribution and terrain properties

This study investigates causes behind correlations between snow and terrain properties in a 27 km mountain watershed. Whereas terrain correlations reveal where snow resides, the physical processes responsible for correlations can be ambiguous. We conducted biweekly snow surveys at small transect scales to provide insight into late-season correlations at the basin scale. The evolving parameters ...

متن کامل

پهنه‌بندی گذرگاه‌های بهمن خیزاستان‌کردستان

Risk is an inevitable part of life, every day people are somehow at risk. Different risks in various forms and perspectives have different functions. Kurdistan province, with various heights and relatively good rainfall, It results the country's cold spots. Since most of seasonal rainfall occurs in winter, Snow cover is often the domain and passes it hillsides. One of the concerns of people in ...

متن کامل

Lidar Measurement of Snow Depth: Accuracy and Error Sources

Airborne laser altimetry (lidar) is a remote sensing technology that holds tremendous promise for mapping snow depth in snow hydrology and avalanche applications. In recent years lidar has seen a dramatic widening of applications in the natural sciences, resulting in technological improvements and an increase in the availability of sensors. Modern sensors allow recording of multiple pulse retur...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2014